If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-26x-160=0
a = 3; b = -26; c = -160;
Δ = b2-4ac
Δ = -262-4·3·(-160)
Δ = 2596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2596}=\sqrt{4*649}=\sqrt{4}*\sqrt{649}=2\sqrt{649}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{649}}{2*3}=\frac{26-2\sqrt{649}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{649}}{2*3}=\frac{26+2\sqrt{649}}{6} $
| 7p+3=3(5-p) | | -3x+8=-6+4x | | 4x^2+24-85=0 | | 36-25x+4x^2=0 | | -1a-6=14-6a | | 2(4x+2)=4x-12(x-3) | | 4x+3x+18=180 | | 36×+80=19x-5-3x | | Z^5=-4-4i | | -0.25=0.5-0.25r | | 39=5y-11 | | 7^n+2=343 | | 3(1-3x)=2(-4x+5) | | 4w-3(2-3w)=-32 | | 3(1-3×)=2(-4x+5) | | 3n^2+5n=n^2-7n-18 | | 5y–3.5=10.5 | | 6y=9+6y | | 11x+9=89+3x | | 8x+6x+3=7 | | 4=13x | | 4=x13 | | 42+12x-4=17x | | |5-2x|=-11 | | 4(x+4)(x-7)=96 | | 7a+5=65+14a | | 6-4a(a+1)=7+a | | 17x-13+17x+8=175 | | 4(x^2+4)(x-7)=96 | | 8c^2-18c=23 | | 15=-1/3q^2+30 | | 8x+5=4x+6 |